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Distributional robustness, but what kind?

Figure credit: The Princess Bride, 
a bedside story by your grandpa 



 


• “Robust” under statistical fluctuation





• Not robust under data distribution shifts, 
when 
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Motivation: From statistical learning to robust learning

Worst-case distribution  within the ambiguity set  
[Delage & Ye 2010] in certain geometry. 


Why study new geometry? 
New geometries leading to new fields of research and 
breakthroughs: 
Information geometry [S. Amari et al.] e.g. descent in 
Fisher-Rao geometry

Wasserstein Gradient flow [F. Otto et al.] e.g. Fokker-
Planck equation as Wasserstein flow

Q ℳ

Figure credit: H. Kremer, J. Zhu
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Background: Kantorovich-Wasserstein Geometry

Definition. The -Wasserstein distance between probability measures 
 on  (with  finite moments, ) is defined through the following 

Kantorovich problem





(Dual Kantorovich problem)

 

2-Wasserstein space  is a geodesic metric space.

Dynamic formulation: à la Benamou-Brenier 

p
P, Q ℝd p p ≥ 1

Wp
p(P, Q) := inf {∫ |x − y |p dΠ(x, y) π(1)

# Π = P, π(2)
# Π = Q}

= sup {∫ ψ1(x) dP(x) + ∫ ψ2(y) dQ(y) ψ1(x) + ψ2(y) ≤ |x − y |p }
(Prob(ℝd), W2)

W2
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1

0 ∫ |vt |
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Background: MMD and interaction force

How does the MMD behave?
MMD with a broad kernel:
MMD P Q sup f 1 EPf X EQf Y .

MMD=1.8

23/34

Definition. Kernel Maximum-Mean Discrepancy (MMD) 
associated with (PSD) kernel  (e.g., )





 is a (simple) metric space.

Dual formulation as an integral probability metric. 

 

 is the reproducing kernel Hilbert space  (RKHS), 
which satisfies ,  

 is the canonical feature of .

As an interaction energy for Wasserstein GF [Arbel et al.] 

k k(x, x′ ) := e−|x−x′ |2/σ

MMD(P, Q) := ∫ k(x, ⋅ )dP−∫ k(x, ⋅ )dQ
ℋ

.

(Prob(ℝd), MMD)

MMD(P, Q) = sup
∥f∥ℋ≤1 ∫ f d(P − Q)

ℋ ℋ
f(x) = ⟨ f, ϕ(x)⟩ℋ, ∀f ∈ ℋ, x ∈ 𝒳

ϕ(x) := k(x, ⋅ ) ℋ

MMD2(P, Q) = ∫ ∫ k(x, y) d(P − Q)(x) d(P − Q)(y)

MMD(P, Q)}

Figure credit: W. Jitkrittum, J. Zhu, H. Wendland

6.2 Bochner’s characterization 75

Fig. 6.2 The reconstruction of a smooth function using a Gaussian with scale parameter α = 10, α =
100, α = 1000.

Proof Suppose that " is bounded and has a nonnegative and nonvanishing Fourier trans-
form. It suffices to show that "̂ ∈ L1(Rd ) is satisfied. Then the Fourier inversion formula
can be applied and Theorem 6.8 finishes the proof.

As in the proof of Bochner’s theorem we choose gm from Theorem 5.20 and get

(2π )d/2"(0) = (2π )d/2 lim
m→∞

∫

Rd
"(x)gm(x)dx

= (2π )d/2 lim
m→∞

∫

Rd
"̂(ω)̂gm(ω)dω

=
∫

Rd
"̂(ω)dω,

since "̂ is nonnegative. Thus "̂ is in L1(Rd ).
If, conversely, " is positive definite then we know from Theorem 6.2 that " is bounded

and from Bochner’s theorem that " is the inverse Fourier transform of a nonnegative finite
Borel measure µ on Rd . Furthermore, using Theorem 5.16, Theorem 5.20 and Fubini’s
theorem we find that

"̂(x) = lim
m→∞

∫

Rd
"̂(ω)gm(ω − x)dω

= lim
m→∞

∫

Rd
"(ω)̂gm(ω)e−i xT ωdω

= lim
m→∞

(2π )−d/2
∫

Rd

∫

Rd
e−iωT ηdµ(η)̂gm(ω)e−i xT ωdω

= lim
m→∞

(2π )−d/2
∫

Rd

∫

Rd
ĝm(ω)e−iωT (η+x)dωdµ(η)

= lim
m→∞

∫

Rd
gm(−η − x)dµ(η)

≥ 0.

Thus "̂ is nonnegative. Now we can proceed as in the first part of the proof to show that
"̂ ∈ L1(Rd ) and ‖"̂‖L1(Rd ) = (2π )d/2"(0). Hence "̂ cannot vanish identically. !
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Gradient Flow Force-Balance



Gradient flow facts
Otto's Gradient flow equation in the Wasserstein space





e.g., diffusion, Fokker Planck equation. It describes the “steepest” 
dissipation of energy  in . [Otto et al 2000s, Ambrosio 2005, …] 


In a different flavor, we can write it just like ODE gradient flow  
in the primal rate-form


  (  is the (sub)diff., e.g., in the sense of Fréchet)


Time-discretization yields the minimizing movement scheme (MMS)


“JKO Scheme”   

∂tμ − ∇ ⋅ (μ∇
δF
δμ

[μ]) = 0

F (Prob(X̄), W2)

·x = − ∇f(x)

·μ = − 𝕂Otto(μ) DF DF

uk ∈ arg inf
u∈𝒫

F(u) +
1
2τ

W2
2 (u, uk−1)

ODE flow: gradient descent  

xk ∈ arg min
x∈ℝd

F(x) +
1
2τ

∥x − xk−1∥2.



Gradient flow force-balance
Force-balance in Wasserstein MMS 


,  : “Kantorovich potential”


In practice, approximate  (and hence ) based on data samples using 
function approximators (force matching, score matching), NN/RKHS, e.g.,


.


We will now see two applications of this force-balance relation to robust learning 

uk ∈ arg inf
u∈𝒫

F(u) +
1
2τ

W2
2 (u, uk−1)

DF +
ϕ
τ

= const . ϕ

ϕ −DF

ϕ ≈ f =
n

∑
i=1

αik(xi, ⋅ ) ∈ ℋ

Dissipation Geometry: 
resist movement 
e.g., viscosity

Force: 
drive movement 
e.g., entropy

Force-balance in ODE:         

∇f(xt) +
x⊤

t − x⊤
t−1

τ
= 0 ∈ X*



Robust Learning under  
(Joint) Distribution Shift



Kernel DRO under distribution shift

Kernel DRO Theorem (simplified). [Z. et al. 2021] 
DRO problem is equivalent to the dual kernel 
machine learning problem, i.e., (DRO)=(K). 
 

(K) min
θ,f∈ℋ

1
N

N

∑
i=1

f(ξi) + ϵ∥f∥ℋ subject to l(θ, ⋅ ) ≤ f

(DRO) min
θ

sup
MMD(Q, ̂P)≤ϵ

𝔼Ql(θ, ξ)

Geometric intuition: dual kernel function f as robust 
surrogate losses (flatten the curve) 

 

f

l(θ, ⋅ ) l(θ, ⋅ )

f

Primal DRO (not solvable as it is)

Example. Robust least squares
min l(θ, ξ) := ∥A(ξ) ⋅ θ − b∥2

2

(a) Robust least squares loss (b) Geometric interpretation

Figure 3: (a) This plot depicts the test loss of algorithms. All error bars are in standard error. We
ran 10 independent trials. In each trial, we solved K-DRO to obtain ✓ ⇤ and tested it on a test dataset
of 500 samples. We then vary the perturbation � from 0 to 4. (b) (red) is the dual optimal solution
f⇤

0 + f⇤. (black) is the function l(✓⇤, ·). The pink bars depict a worst-case distribution while the blue
bars the empirical distribution. We can observe that f⇤

0 + f⇤ touches loss l(✓⇤, ·) at the support of the
worst-case distribution P ⇤ (pink dots). Note f⇤ (normalized) can be viewed as a witness function of
the two distributions.

4 Numerical studies227

This section demonstrates the theoretical insights of K-DRO in action. It is not a benchmark of228

state-of-art performances. See the appendix for more results. The code will be available online229

4.1 Distributionally robust solution to uncertain least squares230

We first consider a robust least squares problem adapted from [17], which demonstrated an im-231

portant application of RO to statistical learning historically. (See also [9, Ch. 6.4].) The task232

is to minimize the objective kA✓ � bk22 w.r.t. ✓. A is modeled by A(⇠) = A0 + ⇠A1, where233

⇠ 2 X is uncertain, X = [�1, 1], and A0, A1 2 R10⇥10, b 2 R10 are given. We compare234

K-DRO against using (a) empirical risk minimization (ERM; also known as sample average ap-235

proximation) that minimizes 1
N

PN
i=1 kA(⇠i) ✓ � bk22, (b) worst-case RO via SDP from [17]. We236

consider a data-driven setting with given samples {⇠i}Ni=1. We formulate the K-DRO problem as237

min✓ maxP2P,µ2C E⇠⇠P kA(⇠) ✓� bk22 subject to
R
�dP = µ, where we choose the uncertainty238

set to be C = {µ : kµ� µP̂ kH  ✏}, where µP̂ =
PN

i=1
1
N �(⇠i).239

Empirical samples {⇠i}Ni=1(N = 10) are generated uniformly from [�0.5, 0.5]. We then apply K-240

DRO formulation (10). To test the solution, we create a distribution shift by generating test samples241

from [�0.5 · (1+�), 0.5 · (1+�)], where � is a perturbation varying within [0, 4]. Figure 3a shows242

this comparison. As the perturbation increases, ERM quickly lost robustness. On the other hand, RO243

is the most robust with the trade-off of being conservative. As expected, K-DRO achieves some level244

of optimality while retaining robustness. We then ran K-DRO with fewer empirical samples (N = 5)245

to show the geometric interpretations. We plot the optimal dual solution f⇤

0 + f⇤ in Figure 3b.246

Recall it is an over-estimator of the loss l(✓, ·). We solve (7) to obtain a worst-case distribution P ⇤.247

Comparing P ⇤ with P̂ , we can observe the adversarial behavior of the worst-case distribution. See248

the caption for more description.249

4.2 Distributionally robust classification250

We now show how kernel-DRO can be applied to train a classification model g✓ : x 7! y. We consider251

a two-dimensional (x 2 R2), two-class classification problem (y 2 {�1, 1}). Samples from class 1252

(red) are drawn from p(x|y = 1) = N ((5, 0)>, I), while that from class -1 (blue) are generated from253

N
�
(3, 1)>, diag(1/2, 2)

�
. The class prior probability is uniform i.e., p(y = �1) = p(y = 1) = 1/2.254

The training samples are shown in Figure 4a. The model is trained by solving K-DRO (10), where255

⇠i := [xi, yi], with the hinge loss l(✓, ⇠) := max(0, 1� g✓(x)y). We use a product kernel of the form256

k((x, y), (x0, y0)) = kX(x, x0)kY (y, y0), where both kX , kY are Gaussian kernels. For simplicity,257

we use a linear classifier g✓(x) := sign(m>x+ c) where ✓ := (m, c).258

7

(test 

Entropy regularization (“interior point method”)





Dual. Adapted from [Kremer et al., Z. 2023] 




soft cons.  
log-barrier 


MMD(Q, ̂P) + λDϕ(Q∥ω) ≤ ϵ

inf
θ,f∈ℋ {𝔼 ̂P f + ϵ∥f∥ℋ + λ𝔼ωϕ* ( −f + l

λ )}
ϕ*KL(t) = exp (t)
ϕ*log(t) = − log (1 − t)



Force-balance of Kernel DRO
Primal DRO:     


Lagrangian:     


MMS in kernel-MMD


       


Force-balance using function approximation RKHS functions, e.g.,





  force-balance relation:     a.e. 
(force matching, score matching)

min
θ

sup
MMD(Q, ̂P)≤ϵ

𝔼Ql(θ, ξ)

min
θ,γ≥0

sup
μ∈𝒫

𝔼μ l(θ, x) − γ ⋅ MMD2(μ, ̂μN) + γϵ2

inf
μ∈𝒫

F(μ) +
1
2τ

MMD2(μ, μk) ⟹ −DL2F =
1
τ ∫ k(x, ⋅ )d(μ − μk)(x) + const .

−DF = f+f0, f =
n

∑
i=1

αik(xi, ⋅ ) ∈ ℋ, f0 ∈ ℝ

DL2F = l(θ, ⋅ ) ⟹ l(θ, ⋅ ) = f + f0

=: f ∈ ℋ
Dual kernel function f as robust 
surrogate losses 
flatten the curve  force balance 

 


→

f
l(θ, ⋅ )

l(θ, ⋅ )

f



Robust Learning under 
Structured Distribution Shift



Introduction: Generalization in Machine Learning

Generalization errors

Model mis-specification
f✓ 6= f 8✓ 2 ⇥

! Use flexible models
(NN/non-parametric)

Finite sample bias
n ⌧ 1

! Statistical learning
theory/regularization

Distribution shifts
Ptest 6= Ptrain

! Robustness,
Causality

Heiner Kremer Robust ML via CMR 14.12.2022 5 / 26

Figure credit: Heiner Kremer

[Heinze‐Deml & Meinshausen 2021]

Published as a conference paper at ICLR 2020

Common training examples Test examples

(P) The economy 
could be still better.
(H) The economy has 
never been better.

y: waterbird
a: water
background

y: landbird
a: land 
background

y: waterbird
a: land    
background

y: dark hair
a: male

y: blond hair
a: female

y: blond hair
a: male

y: contradiction
a: has negation

y: entailment
a: no negation

y: entailment
a: has negation

(P) Read for Slate's take 
on Jackson's findings.
(H) Slate had an opinion 
on Jackson's findings.

(P) There was silence 
for a moment.
(H) There was a short period 
of time where no one spoke.

Waterbirds

CelebA

MultiNLI

Figure 1: Representative training and test examples for the datasets we consider. The correlation
between the label y and the spurious attribute a at training time does not hold at test time.

which optimizes for the worst-case loss over potential test distributions (Ben-Tal et al., 2013; Duchi
et al., 2016). Existing work on DRO has focused on models that cannot approach zero training loss,
such as generative models (Oren et al., 2019) or convex predictive models with limited capacity
(Maurer & Pontil, 2009; Shafieezadeh-Abadeh et al., 2015; Namkoong & Duchi, 2017; Duchi &
Namkoong, 2018; Hashimoto et al., 2018).

We study group DRO in the context of overparameterized neural networks in three applications (Fig-
ure 1)—natural language inference with the MultiNLI dataset (Williams et al., 2018), facial attribute
recognition with CelebA (Liu et al., 2015), and bird photograph recognition with our modified ver-
sion of the CUB dataset (Wah et al., 2011). The problem with applying DRO to overparameterized
models is that if a model achieves zero training loss, then it is optimal on both the worst-case (DRO)
and the average training objectives (Zhang et al., 2017; Wen et al., 2014). In the vanishing-training-
loss regime, we indeed find that group DRO models do no better than standard models trained to
minimize average loss via empirical risk minimization (ERM): both models have high average test
accuracies and worst-group training accuracies, but low worst-group test accuracies (Section 3.1).
In other words, the generalization gap is small on average but large for the worst group.

In contrast, we show that strongly-regularized group DRO models that do not attain vanishing train-
ing loss can significantly outperform both regularized and unregularized ERM models. We con-
sider `2 penalties, early stopping (Section 3.2), and group adjustments that minimize a risk measure
which accounts for the differences in generalization gaps between groups (Section 3.3). Across the
three applications, regularized group DRO improves worst-case test accuracies by 10–40 percentage
points while maintaining high average test accuracies. These results give a new perspective on gen-
eralization in neural networks: regularization might not be important for good average performance
(e.g., models can “train longer and generalize better” on average (Hoffer et al., 2017)) but it appears
important for good worst-case performance.

Finally, to carry out the experiments, we introduce a new stochastic optimizer for group DRO that is
stable and scales to large models and datasets. We derive convergence guarantees for our algorithm
in the convex case and empirically show that it behaves well in our non-convex models (Section 5).

2 SETUP

Consider predicting labels y 2 Y from input features x 2 X . Given a model family ⇥, loss
` : ⇥⇥ (X ⇥ Y) ! R+, and training data drawn from some distribution P , the standard goal is to
find a model ✓ 2 ⇥ that minimizes the expected loss EP [`(✓; (x, y)] under the same distribution P .
The standard training procedure for this goal is empirical risk minimization (ERM):

✓̂ERM := argmin
✓2⇥

E(x,y)⇠P̂ [`(✓; (x, y))], (1)

where P̂ is the empirical distribution over the training data.

In distributionally robust optimization (DRO) (Ben-Tal et al., 2013; Duchi et al., 2016), we aim
instead to minimize the worst-case expected loss over an uncertainty set of distributions Q:

min
✓2⇥

n
R(✓) := sup

Q2Q
E(x,y)⇠Q[`(✓; (x, y))]

o
. (2)

2
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which optimizes for the worst-case loss over potential test distributions (Ben-Tal et al., 2013; Duchi
et al., 2016). Existing work on DRO has focused on models that cannot approach zero training loss,
such as generative models (Oren et al., 2019) or convex predictive models with limited capacity
(Maurer & Pontil, 2009; Shafieezadeh-Abadeh et al., 2015; Namkoong & Duchi, 2017; Duchi &
Namkoong, 2018; Hashimoto et al., 2018).

We study group DRO in the context of overparameterized neural networks in three applications (Fig-
ure 1)—natural language inference with the MultiNLI dataset (Williams et al., 2018), facial attribute
recognition with CelebA (Liu et al., 2015), and bird photograph recognition with our modified ver-
sion of the CUB dataset (Wah et al., 2011). The problem with applying DRO to overparameterized
models is that if a model achieves zero training loss, then it is optimal on both the worst-case (DRO)
and the average training objectives (Zhang et al., 2017; Wen et al., 2014). In the vanishing-training-
loss regime, we indeed find that group DRO models do no better than standard models trained to
minimize average loss via empirical risk minimization (ERM): both models have high average test
accuracies and worst-group training accuracies, but low worst-group test accuracies (Section 3.1).
In other words, the generalization gap is small on average but large for the worst group.

In contrast, we show that strongly-regularized group DRO models that do not attain vanishing train-
ing loss can significantly outperform both regularized and unregularized ERM models. We con-
sider `2 penalties, early stopping (Section 3.2), and group adjustments that minimize a risk measure
which accounts for the differences in generalization gaps between groups (Section 3.3). Across the
three applications, regularized group DRO improves worst-case test accuracies by 10–40 percentage
points while maintaining high average test accuracies. These results give a new perspective on gen-
eralization in neural networks: regularization might not be important for good average performance
(e.g., models can “train longer and generalize better” on average (Hoffer et al., 2017)) but it appears
important for good worst-case performance.

Finally, to carry out the experiments, we introduce a new stochastic optimizer for group DRO that is
stable and scales to large models and datasets. We derive convergence guarantees for our algorithm
in the convex case and empirically show that it behaves well in our non-convex models (Section 5).

2 SETUP

Consider predicting labels y 2 Y from input features x 2 X . Given a model family ⇥, loss
` : ⇥⇥ (X ⇥ Y) ! R+, and training data drawn from some distribution P , the standard goal is to
find a model ✓ 2 ⇥ that minimizes the expected loss EP [`(✓; (x, y)] under the same distribution P .
The standard training procedure for this goal is empirical risk minimization (ERM):

✓̂ERM := argmin
✓2⇥

E(x,y)⇠P̂ [`(✓; (x, y))], (1)

where P̂ is the empirical distribution over the training data.

In distributionally robust optimization (DRO) (Ben-Tal et al., 2013; Duchi et al., 2016), we aim
instead to minimize the worst-case expected loss over an uncertainty set of distributions Q:

min
✓2⇥

n
R(✓) := sup

Q2Q
E(x,y)⇠Q[`(✓; (x, y))]

o
. (2)

2

waterbird

+ land
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which optimizes for the worst-case loss over potential test distributions (Ben-Tal et al., 2013; Duchi
et al., 2016). Existing work on DRO has focused on models that cannot approach zero training loss,
such as generative models (Oren et al., 2019) or convex predictive models with limited capacity
(Maurer & Pontil, 2009; Shafieezadeh-Abadeh et al., 2015; Namkoong & Duchi, 2017; Duchi &
Namkoong, 2018; Hashimoto et al., 2018).

We study group DRO in the context of overparameterized neural networks in three applications (Fig-
ure 1)—natural language inference with the MultiNLI dataset (Williams et al., 2018), facial attribute
recognition with CelebA (Liu et al., 2015), and bird photograph recognition with our modified ver-
sion of the CUB dataset (Wah et al., 2011). The problem with applying DRO to overparameterized
models is that if a model achieves zero training loss, then it is optimal on both the worst-case (DRO)
and the average training objectives (Zhang et al., 2017; Wen et al., 2014). In the vanishing-training-
loss regime, we indeed find that group DRO models do no better than standard models trained to
minimize average loss via empirical risk minimization (ERM): both models have high average test
accuracies and worst-group training accuracies, but low worst-group test accuracies (Section 3.1).
In other words, the generalization gap is small on average but large for the worst group.

In contrast, we show that strongly-regularized group DRO models that do not attain vanishing train-
ing loss can significantly outperform both regularized and unregularized ERM models. We con-
sider `2 penalties, early stopping (Section 3.2), and group adjustments that minimize a risk measure
which accounts for the differences in generalization gaps between groups (Section 3.3). Across the
three applications, regularized group DRO improves worst-case test accuracies by 10–40 percentage
points while maintaining high average test accuracies. These results give a new perspective on gen-
eralization in neural networks: regularization might not be important for good average performance
(e.g., models can “train longer and generalize better” on average (Hoffer et al., 2017)) but it appears
important for good worst-case performance.

Finally, to carry out the experiments, we introduce a new stochastic optimizer for group DRO that is
stable and scales to large models and datasets. We derive convergence guarantees for our algorithm
in the convex case and empirically show that it behaves well in our non-convex models (Section 5).

2 SETUP

Consider predicting labels y 2 Y from input features x 2 X . Given a model family ⇥, loss
` : ⇥⇥ (X ⇥ Y) ! R+, and training data drawn from some distribution P , the standard goal is to
find a model ✓ 2 ⇥ that minimizes the expected loss EP [`(✓; (x, y)] under the same distribution P .
The standard training procedure for this goal is empirical risk minimization (ERM):

✓̂ERM := argmin
✓2⇥

E(x,y)⇠P̂ [`(✓; (x, y))], (1)

where P̂ is the empirical distribution over the training data.

In distributionally robust optimization (DRO) (Ben-Tal et al., 2013; Duchi et al., 2016), we aim
instead to minimize the worst-case expected loss over an uncertainty set of distributions Q:

min
✓2⇥

n
R(✓) := sup

Q2Q
E(x,y)⇠Q[`(✓; (x, y))]

o
. (2)

2

landbird 
+ land

waterbird 
+ water

[Sagawa et al. 2020]


Introduction: Generalization in Machine Learning

Machine Learning

y := f (x) + ✏

Given i.i.d. observations {(xi , yi )}ni=1 of random variables (X ,Y ) ⇠ Ptrain
taking values in X ⇥ Y , learn a model f✓ : X ! Y and evaluate on Ptest.

Empirical risk minimization (ERM):
Define a loss function ` : X ⇥ Y ⇥ ⇥ ! R+ and minimize average error

min
✓2⇥

R(✓) :=
1
n

nX

i=1

`(xi , yi ; f✓) = EP̂train
[`(X ,Y ; f✓)]

with e.g. `(x , y ; f✓) = (y � f✓(x))2.
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Learning task
What can go wrong?

̂Ptrain

Qtest

From statistical fluctuation to structured distribution shift

Wasserstein/Kernel DRO 
not suitable for (strong) 
structured distribution 
shifts !

(Mild)                                            (Strong)



Structured Distribution Shift — Causal Confounding
Causal confounding can lead to much stronger 
distribution shifts than those considered in (joint) 
distribution shift, e.g., DRO, adversarial robustness.


: Smoking, : Cancer, : Lifestyle





Regression  or DRO does not work in 

this case.

X Y U

Y := gθ(X) + ϵU, 𝔼[ϵU] = 0, but 𝔼[ϵU |X] ≠ 0
⟹ gθ(x) ≠ 𝔼[Y |X = x]

min
θ

𝔼[∥Y − gθ(X)∥2]

Learning Under Structured Distribution Shifts

Structured Distribution Shift: Confounding

(Joint) DRO mostly robustifies against finite-sample errors
! Confounding can lead to much stronger distribution shifts!

X : Smoking, Y : Cancer, U: Lifestyle

X Y

U

g✓

Y := g✓(X ) + ✏U , E[✏U ] = 0, but E[✏U |X ] 6= 0
=) g✓(x) 6= E[Y |X = x ]

Take into account genetic predisposition for nicotine addiction Z

Z X Y

U

g✓

E[✏U |Z ] = E[Y � g✓(X )|Z ] = 0 PZ -a.s.

Conditional moment restriction
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Instrument: Genetic predisposition 
for nicotine addiction Z

Kernel Method of Moment: conditional 
moment restriction for causal inference

Robustness against structured distribution shifts instead of 
(joint-)DRO. Estimating  via conditional moment restriction (CMR)




Generalized Empirical likelihood [Owen, 1988; Qin and Lawless, 1994] with 
CMR [Bierens, 1982]. Equivalently, generalized method of moment (GMM)


, 


Kernel MoM [Kremer et al., Z. 2023] with CMR


gθ

𝔼[Y − gθ(X) |Z] = 0 ℙZ-a.s.

inf
θ,Q∈𝒫

Dϕ(Q∥ ̂P)  s.t.  𝔼Q [(Y − gθ(X))T h(Z)] = 0 ∀h ∈ ℋ

inf
θ,Q∈𝒫

1
2

MMD2(Q, ̂P)  s.t.  𝔼Q [(Y − gθ(X))T h(Z)] = 0
Lift the restriction that  is an 
atomic distribution

Q



Kernel MoM: duality and algorithm






Theorem. [Kremer et al., Z. 2023] The MMD profile  has the strongly dual form





Entropy regularization Infinite constraint  soft-constraint  




results in an unconstrained dual 


θKMM = arg min
θ

R(θ)

R(θ) := inf
Q∈𝒫

1
2

MMD2(Q, ̂P)  s.t.  𝔼Q [(ψ(X; θ))T h(Z)] = 0

R(θ)

R(θ) = sup
f0 ∈ ℝ, f ∈ ℱ,

h ∈ ℋ

f0 +
1
n

n

∑
i=1

f(xi, zi) −
1
2

∥f∥2
ℱ

s . t . f0 + f(x, z) ≤ ψ(x; θ)Th(z) ∀(x, z) ∈ 𝒳 × 𝒵 .
→

inf
θ,Q∈𝒫

1
2

MMD2(Q, ̂P) + λDϕ(Q∥ω)  s.t.  𝔼Q [ψ(X; θ)Th(Z)] = 0

𝔼 ̂Pn
[ f0 + f(X, Z)] −

1
2

∥f∥2
ℱ − 𝔼ω[φ*ϵ (f0 + f(X, Z) − ψ(X; θ)Th(Z))]

x

√(x)T h
f(x) + ¥

x

f
(x

)
+

¥

√(x)T h
√(x)T h + ≤
MMD only
KL-reg
Log-reg

soft cons.  
log-barrier 

ϕ*KL(t) = exp (t)
ϕ*log(t) = − log (1 − t)



Kernel MoM: Nonlinear Instrumental Variable Regression

, 

 is nonlinear in both .


Estimate  using Kernel MoM with CMR


Takeaway. (Strong) structured distribution shifts 
(e.g., causal confounding) can be accounted for 
using the Kernel MoM + CMR, but not (joint) 
DRO, adversarial robustness, …

Y := g(X; θ0) + ν(U) + ϵ1

X := η(Z) + μ(U) + ϵ2

Z ∼ PZ, ϵ1/2 ∼ 𝒩(0,σ)
g(x; θ) x, θ

θ

Learning Under Structured Distribution Shifts

Experimental Results
Nonlinear Instrumental Variable Regression

Y := g(X ; ✓0) + ⌫(U) + ✏1

X := ⌘(Z ) + µ(U) + ✏2

Z ⇠ PZ , ✏1/2 ⇠ N (0, �)
Z X Y

U

g✓

with g(x ; ✓) = ✓2 + ✓3(x � ✓1) +
✓4�✓3

2 log
�
1 + e

x�✓1
�

CMR: E[Y � g(X ; ✓)|Z ] = 0 PZ -a.s.
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Force-balance of Kernel MoM
Lagrangian:     


Minimizing movement scheme (MMS) in MMD 


Force balance using function approximation, e.g., kernel functions





Since , the optimal force function approximates the moment function


  a.e.

sup
γ∈ℝ,h∈ℋ

inf
Q

1
2

MMD2(Q, ̂P) + γ ⋅ 𝔼Q [(Y − gθ(X))T h(Z)]

inf
μ∈𝒫

F(μ) +
1
2γ

MMD2(μ, μk)

−DF = f + f0, f =
1
τ

n

∑
i=1

αik([xi, yi, zi], ⋅ ) ∈ ℋ, f0 ∈ ℝ

DF = (Y − gθ(X))T h(Z)

f + f0 = (Y − gθ(X))T h(Z)



Summary

(Y − gθ(X))T h(Z )

f

• We exploited explicitly parametrized dual force functions for 
robust learning under joint and structured distribution 
shifts. This is inspired by generalized force in gradient flows, 
optimal transport, and mechanics.


• The gradient flow force-balance eqns give insights for 
constructing robust learning algorithms.


• Kernel DRO: force gives the robustified surrogate loss 




• Kernel MoM: force gives the robustified moment function 

f
l(θ, ⋅ )

This talk is mainly based on:


1.  Z., Jitkrittum, W., Diehl, M. & Schölkopf, B. Kernel Distributionally 

Robust Optimization.  AISTATS 2021

2.  Kremer, H., Nemmour, Y. , Schölkopf, B. & Z. Estimation Beyond 

Data Reweighting: Kernel Method of Moments. ICML 2023

slides & code available: jj-zhu.github.io


Postdoc position opening in Berlin: data-
driven dynamics modeling for medical 
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